
Clermont Auvergne University Computer Vision: Practical 4

Camera models and stereovision

1 Introduction

The objective of this session is to practice with camera models and stereo-vision, following
the lecture 4 of Computer Vision course. You can get more information about lectures
and associated practical sessions on my website: http://chateaut.fr. Essential needed
knowledges includes a beginning level of computer science (Linux, Python programming
with Opencv, Numpy, Matplotlib, and Pytorch (for sessions on Deep Learning)) and ap-
plied mathematics.

The listing 1 shows an "Hello Word" python script that loads and convert an image
using opencv; and displays it with matplotlib and illustrates relevant functions.

2 Camera Projection Matrix

Figures 1 and2 show the configuration of a virtual stereo system that looks at a cube. The
Word reference Rw is set at the center of the vector between the optical axis of the two
cameras. The orientation of each camera is 20o from the z axis. The optical center of the
cameras are at 2 meters from the world reference frame.

Figure 1: Left: 3D projection of the vision system; right: top view

Figure 2: Left: front view; right: right view

T. Chateau 1 page 1/6

Clermont Auvergne University Computer Vision: Practical 4

Intrinsec parameters of the two cameras are:

• f = 1750pixels

• u0 = 800

• v0 = 600

• No distortion

Figure 3 shows the image acquired from the left camera. The python script test_geom.py
is a baseline for the following questions.

Questions:

1. Compute the extrinsic matrices (homogeneous transformation matrix between the
world reference frame and the cameras reference frames).

2. build the intrinsic matrix

3. Compute the projection model for the two cameras C1 (for the left camera) and C2
(for the right one). TIP: the matrix product operator in python is @

4. Project some corners on the images to validate the models.

Figure 3: Left image: view of the cube

3 stereo-vision

Given the projection matrices of the two cameras (C1 and C2), and the projection of the
same 3D point P = (Px, Py, Pz)

T in the two cameras (p1 = (u1, v1)
T and p2 = (u2, v2)

T),
the aim of this section is to estimate the coordinates of the 3D point P from p1 and p2.We
will notice P̃ = (PT , 1)T the homogeneous vector associated to P.

1. compute the relation between p̃x and P̃x

2. deduce the equation betwen ux and (Px, Py, Pz)
T

T. Chateau 2 page 2/6

Clermont Auvergne University Computer Vision: Practical 4

3. write, as a linear system (AP = B) the 4 equations that link P and p1,p2

4. propose an analytic solution to the linear system AP = B (that minimizes a least
square error)

5. You should complete the The python script test_geom2.py to write the linear system
and solve it. The script ask for a manuel selection of one point in bith images and
compute the coordinates of the 3D estimated point.

6. modify the script to display the projection of the 3D point on both images.

4 Application to 3D measure of distances in stereo-images

The aim of the section is to estimate 3D distances from a couple of stereo images. The fig-
ure 4 shows a pair of stereo images from the dataset Kitti. The script test_geom_kitti.py

Figure 4: top: left image from the kitti dataset; bottom: right image

uses opencv function to compute the triangulation between the the projection of the 3D
point into the two images:
P3D = triangulatePoints(Cleft,Cright,pleft,pright)

1. You have to compute 3D points from the opencv function (in the script
test_geom_kitti.py)

2. Display the data returned by the opencv function and explain the line Xcv /= Xcv[3].

3. Compute the distance between the two 3D points

4. Run the script (you have to select two points each image in the same order) and
measure the diameter of the circular blue traffic sign.

T. Chateau 3 page 3/6

Clermont Auvergne University Computer Vision: Practical 4

5 additional question

Modify the previous script to select 4 points in each image and compute the area of the
delimited shape.

Annexe : Transformation matrices

In the case of a homogeneous transformation, the mathematical model is a 4x4 matrix.
Going from the reference frame Ri to the reference frame Rf is modelled by the matric
iMf by the relation:

iTf = iMf = (isj
inj

iaj
iPj) =


sx nx ax Px

sy ny ay Py

sz nz az Pz

0 0 0 1

 =

(
iRf

iPf

0 1

)
(1)

Using iMf , it is possible to compute the coordinates of a point P in the reference frame
Rf , given its coordinates into Rf by the equation:


x′

y′

z′

1


Ri

=i Mf .


x
y
z
1


Rf

=

(
iRf

iPf

0 1

)
.


x
y
z
1


Rf

(2)

When the transformation between the two reference frames is only a translation, the trans-
formation matrix follows the notations:

• Trans(a, b, c) for a translation (a along the x axis, b along the y axis and c along z
axis)

• Trans(x, a) for a translation of a along x axis

• Trans(y, b) for a translation of b along y axis

• Trans(z, c) for a translation of c along z axis

M =


a

I3 b
c

0 0 0 1

 = (3)

when the transformtion between the two reference frames is only a rotation, the notations
are:

• Rot(x, θx) for a rotation (θx around the x axis)

• Rot(y, θy) for a rotation (θy around the y axis)

• Rot(z, θz) for a rotation (θz around the z axis)

T. Chateau 4 page 4/6

Clermont Auvergne University Computer Vision: Practical 4

In the homogeneous matrix, the rotation is modelled by the matrix R of the equation (1)
4. When there is no rotation, R belongs the identity matrix:

R = I3 =

 1 0 0
0 1 0
0 0 1

 (4)

Example 1: A rotation θx along x axis.

R =

 1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 =

 1 0 0
0 cθx −sθx
0 sθx cθx

 (autre notation) (5)

Let notice (iRf
, jRf

, kRf
) the basis associated to Rf and (iRi , jRi , kRi) the ba-

sis associated to Ri. The rotation matrix R is given by the coordinates of
(iRf

, jRf
, kRf

) in the reference frame given by (iRi , jRi , kRi) :

iRf
= 1.iRi + 0.jRi + 0.kRi = isf

jRf
= 0.iRi + cos θx.jRi + sin θx.kRi = inf

kRf
= 0.iRi − sin θx.jRi + cos θx.kRi = iaf

(6)

Example 2: A rotation θy along the y axis.

R =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 =

 cθy 0 sθy
0 1 0

−sθy 0 cθy

 (autre notation) (7)

Example 3: A rotation θz along z axis.

R =

 cos θz − sin θz 0
sin θz cos θz 0
0 0 1

 =

 cθz −sθz 0
sθz cθz 0
0 0 1

 (autre notation) (8)

Listing 1: HelloWord Python script: load an image and convert it using opencv then
display using matplotlib
#!/ usr / b in /env python3
−∗− coding : u t f −8 −∗−
"""
Created on Mon Aug 6 08 :46 :29 2018
he l lo_wold s imply l oad s an image wi th opencv , conver t s i t to RGB and GRAYSCALE
and d i s p l a y s i t us ing ma t p l o t l i b
@author : t h i e r r y cha t e au
"""
import cv2
from matp lo t l i b import pyplot as p l t
import numpy as np
This i s an example o f f unc t i on wi th a s t r i n g argument t ha t r e tu rns another
s t r i n g

T. Chateau 5 page 5/6

Clermont Auvergne University Computer Vision: Practical 4

def my_func(my_arg) :
s t r i n g 2 = my_arg + ’ ␣ toto ␣ ’ ;
return s t r i n g 2

This i s the main func t i on t ha t i s launched when t h i s f i l e i s run as a s c r i p t
def main () :

c a l l f unc t i on my_func
s t = my_func("my␣name␣ i s ")
print (s t)
Read an image f i l e (im i s a numpy matrix
(nb l ine s , nbcolums , BGR 3 channe l s))
f i l ename = " b i l l a r d_ l a r g e . jpg "
img = cv2 . imread (f i l ename)
Convert to RGB
imgrgb = cv2 . cvtColor (img , cv2 .COLOR_BGR2RGB)
Convert to g r a y s ca l e image
imggray=cv2 . cvtColor (imgrgb , cv2 .COLOR_RGB2GRAY)
Disp lay the RGB and gray images
d i v i d e p l o t screen in t o 1 l i n e , 2 columns and s e l e c t f i r s t subscreen as
curren t screen
p l t . subp lot (121)
p l t . imshow (imgrgb)
p l t . t i t l e (’ Color ␣RGB␣image ’)
p l t . subp lot (122)
p l t . imshow (imggray , ’ gray ’ , vmin=0, vmax=255)
p l t . t i t l e (’ Graysca le ␣ image ’)

#
i f __name__ == "__main__" :

execu te on ly i f run as a s c r i p t
main ()

T. Chateau 6 page 6/6

