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introduction to Machine Learning

What

3 lectures:

- 1: general introduction

- 2: bayesian methods and parametric gaussian
models

- 3: non parametric models

Who
Ms students and last year engineers school

Credits
A. Zisserman lecture (oxford)
C. Wolf: LIRIS, Lyon
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Machine learning
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Clermont PI

recommended books

- Pattern Recognition and
Machine Learning

Christopher Bishop, Springer, 2006.

* Excellent on classification and
regression
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recommended books

* On line book: —

Information Theory, Inference,

Information Theory, Inference, and Learning s eamingaigoritvns
Algorithms. bR VR

David J. C. MacKay, CUP, 2003 )

* Covers some of the course material thoughatan ..
advanced level
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What is Machine Learning?

an algorithm that can improve it performance using
training datas

X y=f(x0) Y

@ is a vector of parameters (large) computed from a training database

function f cannot be defined with rules by hands

face detection, speech recognition, stock prediction,...
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What is Machine Learning?

an algorithm that can improve it performance using
training datas

X y = f(x;0) y
@ is a vector of parameters (large) computed from a training database

if y is a discret: classification
if y is continus: regression
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The machine learning framework

* Apply a prediction function to a feature representation of
the image to get the desired output:

f(&) = "apple’
f(Rd) = "tomato”
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Traditional Machine Learning
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Training

Recent Machine Learning (1A)
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Learn a decision function into a feature space
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Model selection

Underfitting
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Overfitting can be reduced by increasing the training size
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Regularisation
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Introduction

Example 1:
hand written digit recognition

X y=[f(x60) Y

/ Z_ rs q represent input image as a vector:

= R794
Gl |72 4
Images are 28 x 28 pixels learn function f:
fix—1{0,1,2,3,4,5,6,7,8,9}
this is a classification problem
)
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x - y=[f(x0) Y

cld@l A\ (4AL2

3 R ot 'a 2 A 5 > .7 we need an annotated dataset

(supervised learning)

‘Z é (7‘ ‘} "l / 3 5 5 &J 6000 samples to Iearnbhe
parameter vector
el 772\ 7148279

P8 T3 L9qgs

Training based systems can
achieved a test error of 0.4%

X
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Introduction

Example 2:

vehicle detection
X y = f(x;0) y

we need an annotated dataset
(supervised learning)
samples to learn the parameter
vector @

Mhalla PhD: Pascal Institute, 2017

r

Institut Pascal Fiscal



uuuuuuuuu
Clermont
Auvergne

Introduction

PASCAL

Example 3:
sensori-motor estimation

x y=[f(x0) ¥

stereo-vision focusing

we need an annotated dataset
(supervised learning)
6000 samples to learn the
parameter vector @

image center
Francois de la Bourdonnaye, PhD, 2017; IP object detection
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Decade
<1950s

1950s

1960s

1970s

1980s
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Summary

Statistical methods are discovered and refined.

Pioneering machine learning research is conducted using simple algorithms.

Bayesian methods are introduced for probabilistic inference in machine learning[1].

'Al Winter' caused by pessimism about machine learning effectiveness.

Rediscovery of backpropagation causes a resurgence in machine learning research.

Work on machine learning shifts from a knowledge-driven approach to a data-driven approach.

1990s Scientists begin creating programs for computers to analyze large amounts of data Support
vector machines and recurrent neural networks become popular.
Kernel methods grow in popularity[3], and competitive machine learning becomes more
2000s :
widespread[4].
2010s Deep learning becomes feasible, which leads to machine learning becoming integral to
many widely used software services and applications.
https://en.wikipedia.org/wiki/Timeline_of_machine_learning I-
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https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Bayesian_method
https://en.wikipedia.org/wiki/Bayesian_inference
https://en.wikipedia.org/wiki/Timeline_of_machine_learning#cite_note-1
https://en.wikipedia.org/wiki/AI_Winter
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Support_vector_machines
https://en.wikipedia.org/wiki/Recurrent_neural_networks
https://en.wikipedia.org/wiki/Kernel_methods
https://en.wikipedia.org/wiki/Timeline_of_machine_learning#cite_note-3
https://en.wikipedia.org/wiki/Timeline_of_machine_learning#cite_note-4
https://en.wikipedia.org/wiki/Deep_learning
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Learning based approaches

Training Data

Supervised

Learning All Labeled Data > Model
Semi- Some Labeled Data

Supervised

Learning Lots of Unlabeled
Data

Unsu Pervised All Unlabeled Data
Learning

-
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Datasets

Train

Dataset

v
Validate

Test
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Over-learning
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Over-learning

accuracy training accuracy

validation accuracy:
little overfitting

validation accuracy: strong overfitting

g
epoch

Institut Pascal

PASCAL



m
UNIVYERSITE

Clermont
Auvergne -
Ju—

PASCAL

Accuracy on test set:
The rate of correct classification on testing set

Error Rate on test set:
the percentage of wrong predictions on test set

Confusion matrix

Speed and scalability:

the time to build the classifier and to classify new sample, and the scalability
with respect to the data size

Robustness:
handling noise and missing values

X
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Introduction

Evaluation criteria (ROC curve)
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Evaluation criteria (recall precision curve)
. . I[)
:g Precision ; —— and
g Recall = P
% 0.2 0.4 0.6 0.8 : F—9 precision - recall
recall ~ 7 precision + recall
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Evaluation criteria (detection)

Intersection over Union (loU) for object detection

Area of Overlap

loU =

Area of Union

r
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Supervised classification
parametric methods non parametric methods
- Bayesian classifiers - K nearest neighbours
- SVM - Kernel density estimation
- Random forest
- Neural networks
>
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Starred algorthims

- bayes rule

- Kppv
- sVvm
- adaboost

- heural networks
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