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Bayesian Classifier

Bayesian decision is very popular in pattern recognition and machine learning

It is a probabilistic based model

The problem is expressed using probabilities (input and output).

Under such hypothesis, this theory is optimal.

But ...

T. Chateau: http://chateaut.fr (IP) MACHINE LEARNING 2017 3 / 21



Toy example

Example of a company that transforms tree trunks into wooden planks.
Inputs trees of this factory are from two varieties

Let define the state (class) of a plank as the category of tree that is used:
(class ω1 for category 1) or (class ω2 for category 2).
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Toy example

Prior probalility

We assume the proportion of planks produced are known: 75% of trees from
category 1 and 25% of trees from category 2.

Question: With no measure, how to decide the class associated to the next
plunk that will be produce?

Answer : We will bet on category 1 (minimization of the error probability)

Finally, we use a important informations: (prior probabilities):

p(ω1) = 0.75
p(ω2) = 0.25
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Toy example

Prior probabilities

When no prior is known, the same probability for each class is chosen.

When it is possible, prior can learn with statistics.
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Règle de Bayes

Let {ω1, ω2, ...ωc} be a set of c classes and x a feature vector (measures).

For each class ωi we assume that we known:

P(ωi ) : Prior probability for each class,
p(x|ωi ) : the probability density function of the features given the class
(likelihood function)
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Bayes rule

The Bayes rule computes the posterior probability using the following rule:

P(ωi |x) =
p(x|ωi )P(ωi )

p(x)

with :
p(x) =

∑
i

(p(x|ωi ).P(ωi ))
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Illustration of Bayes rule

2 classes
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When we change P(ωi)

2 classes
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Error probability

Let x a feature vector and δ(x) = ωi a decision. The error probability associated
to this decision is:

P(error|x) =
∑
j 6=i

P(ωj |x) = 1− P(ωi |x)

The global error probability associated to the system is :

P(errorglob|x) =

∫ ∞
−∞

P(error|x).P(x)dx
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Optimal decision

The optimal decision (that minimize the error probability) is computed by:

δ(x) = ωi

such as:
P(ωi |x) ≥ P(ωj |x)∀j

which is equivalent to:

p(x|ωi ).P(ωi ) ≥ p(x|ωj).P(ωj)∀j
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Regions of decision

For two classes (Régions of decision, boundary of decision)
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Cost and Risk

Let {δ1, δ2, ..δd}, be the set of the possible decisions: δi is associated to
δ(x) = ωi

Let λ(δi |ωi ) a cost of the decision δi when the object belongs to the classωi

(correct classification)

the error probabiliy seen below is the special case:

λ(δi , ωi ) =

{
0 i = j
1 i 6= j

(1)
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Risq

The risk associated to the decision δi (conditional risk) is:

R(δi |x) =
∑
j

λ(δi |ωj)P(ωj |x)

the global risk is computed by:

R =

∫
Rn

R(δ(x)|x)p(x)dx

Minimizing the global risk is obtained by choosing, for each value of x, the
decision which minimize the conditional risk.
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Example for two classes

Let’s define λij = λ(δi |ωj) (the cost of the predicted decision δi While the
true class is ωj)

R(δ1|x) = λ11p(ω1|x) + λ12p(ω2|x)

R(δ2|x) = λ21p(ω1|x) + λ22p(ω2|x)

with : λ11 < λ12 and λ21 < λ22 (because the right decision must be the one
with the lowest cost):

ω1 if R(δ1|x) < R(δ2|x)
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Example of two classes

therefore:
(λ21 − λ11)P(ω1|x) > (λ12 − λ22)P(ω2|x)

and
(λ21 − λ11)P(x|ω1)P(ω1) > (λ12 − λ22p(x|ω1)P(ω1)

finally, we decide ω1 if:

P(x|ω1)

P(x|ω2)
>
λ12 − λ22
λ21 − λ11

P(ω2)

P(ω1)

this ratio is called likelihood ratio
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Classification by minimizing the error

A symetric cost function is defined by: λij = 0 if i = j and λij = 1 si i 6= j .

risk:
R(δi |x) =

∑
j

λ(δi |ωj)P(ωj |x)

R(δi |x) =
∑
j 6=i

P(ωj |x) = 1− P(ωi |x)

Minimizing the risk Minimiser is done by maximizing posterior probabilities.
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Discriminative functions

To define a decision rule, we use a discriminative function:

gi (x) , i = 1, ..s

(s=number of classes)

The s discriminative functions are such as a unknown feature vector x is
classify in the class ωi if gi (x) > gj(x) ∀j 6= i
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Discriminative functions

Several discriminative functions could be defined:

gi (x) = −R(δi |x)

gi (x) = p(ωi |x)

gi (x) = p(x|ωi )P(ωi )

f (gi (x)) if f is a monotonous increasing function gi is a discriminative
function.

T. Chateau: http://chateaut.fr (IP) MACHINE LEARNING 2017 20 / 21



Discriminative functions

Relevant discriminative functions:

gi (x) = p(ωi |x)

gi (x) =
p(x|ωi )P(ωi )∑
i (p(x|ωi ).P(ωi ))

gi (x) = p(x|ωi )P(ωi )

gi (x) = log(p(x|ωi )) + log(p(ωi ))
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