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Bayesian Classifier

Bayesian decision is very popular in pattern recognition and machine learning
It is a probabilistic based model

The problem is expressed using probabilities (input and output).

Under such hypothesis, this theory is optimal.

But ...
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@ Example of a company that transforms tree trunks into wooden planks.
Inputs trees of this factory are from two varieties

o Let define the state (class) of a plank as the category of tree that is used:
(class wy for category 1) or (class w, for category 2).
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Toy example

Prior probalility
@ We assume the proportion of planks produced are known: 75% of trees from
category 1 and 25% of trees from category 2.
@ Question: With no measure, how to decide the class associated to the next
plunk that will be produce?
@ Answer : We will bet on category 1 (minimization of the error probability)
o Finally, we use a important informations: (prior probabilities):

o p(w;) =0.75
) p((.tJ2) = 025

T. Chateau: http://chateaut.fr (IP) MACHINE LEARNING




Prior probabilities
@ When no prior is known, the same probability for each class is chosen.

@ When it is possible, prior can learn with statistics.

T. Chateau: http://chateaut.fr (IP) MACHINE LEARNING



Regle de Bayes

o Let {w1,ws,...wc} be a set of c classes and x a feature vector (measures).
@ For each class w; we assume that we known:

o P(wj) : Prior probability for each class,
e p(x|w;i) : the probability density function of the features given the class
(likelihood function)
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Bayes rule

@ The Bayes rule computes the posterior probability using the following rule:

p(x|w;i) P(w;)

Pk =00

with :
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lllustration of Bayes rule
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When we change P(wj)

2 classes
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Q Left: P(w1) =0.3, P(wp) =0.7
@ Right: P(wy) = 0.7, P(wz) = 0.3
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Error probability

Let x a feature vector and §(x) = w; a decision. The error probability associated
to this decision is:

P(error|x) = Z P(wjlx) =1 — P(wj|x)
J#i
The global error probability associated to the system is :
oo

P(errorglob|x):/ P(error|x).P(x)dx

—00
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Optimal decision

The optimal decision (that minimize the error probability) is computed by:
5(X) = Wj

such as:
P(wi|x) > P(wj|x)¥j

which is equivalent to:

p(xlecr).P(wr) > plxly).P(w;)V]
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Regions of decision

For two classes (Régions of decision, boundary of decision)
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Q left P(w1) =0.3, P(w2) =0.7
@ right P(w1) = 0.7, P(wy) =0.3
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Cost and Risk

o Let {01,02,..04}, be the set of the possible decisions: §; is associated to
0(x) = wj

o Let A\(d;|w;) a cost of the decision d; when the object belongs to the classw;
(correct classification)

@ the error probabiliy seen below is the special case:

O :{ ?:;j (1)
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@ The risk associated to the decision §; (conditional risk) is:
R(di]x) = Z)\ (0i]wj) P(wj|x)
o the global risk is computed by:

R= / R(5x))p(x)x

@ Minimizing the global risk is obtained by choosing, for each value of x, the
decision which minimize the conditional risk.
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Example for two classes

@ Let's define A\jj = A(di|w;) (the cost of the predicted decision d; While the
true class is wj)
R(d11%) = Arrp(wi[x) + Ar2p(wsa|x)
R(52|X) = )\zlp(wl\x) + )\ggp(w2|x)

with © A\13 < A1p and Ay < Ap (because the right decision must be the one

with the lowest cost):
wy if R((51|X) < R((52|X)
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Example of two classes

o therefore:
(/\21 — /\11)P(W1|X) > ()\12 — )\22)P(w2|x)

@ and
(A21 — A1) P(x|w1) P(w1) > (A2 — Ao2p(xX|wi) P(w1)
o finally, we decide w if:
P(x|w1) )\12 — )\22 P(wz)
P(X|OJ2) )\21 — )\11 P(wl)

@ this ratio is called likelihood ratio
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Classification by minimizing the error

@ A symetric cost function is defined by: \j =0if i =jand \j =1si i #j.

@ risk:

R(di]x) = Z)\ (67]w;) P(wj|x)

R(5i|%) =) P(wjlx) = 1 — P(wi|x)

J#i

@ Minimizing the risk Minimiser is done by maximizing posterior probabilities.
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Discriminative functions

@ To define a decision rule, we use a discriminative function:

(s=number of classes)

@ The s discriminative functions are such as a unknown feature vector x is
classify in the class w; if gi(x) > gj(x) Vj # i
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Discriminative functions

Several discriminative functions could be defined:
e gi(x) = —R(4|x)
o gi(x) = p(wilx)
® gi(x) = p(x|wi)P(wi)

e f(gi(x)) if f is a monotonous increasing function g; is a discriminative
function.
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Discriminative functions

Relevant discriminative functions:

o gi(x) = p(wilx)
o gi(x) = p(x|wi) P(wi)
' 2o i(p(x|wi). P(wi))
o gi(x) = p(x|w;)P(w;)
o gi(x) = log(p(x|w;)) + log(p(w;))
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