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introduction to Machine Learning

What
3 or 4 lectures:

1: general introduction

2: bayesian methods and parametric gaussian models
3: non parametric models

4: some popular classifiers

1: introduction: features, gaussian models and naive Bayes
classifier
comparison of popular classifiers

Who
Ms students and last year engineers school

Credits

Zisserman lecture (oxford)
C. Wolf: LIRIS, Lyon
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recommended books

. = IS SSE T
- Pattern Recognition and Pl PATTERN RECOGNITION
Machine Learning 4 avo MACHINE LEARNING
Christopher Bishop, Springer, 2006. :

« Excellent on classification and
regression
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recommended books

* On line book: T
Information Theory, Inference,

Informatlon Theory’ Inference, and Learning and Learning Algorithms.
Algorithms. Y AR
David J. C. MacKay, CUP, 2003 <,

» Covers some of the course material thoughatan ..
advanced level

q
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What is Machine Learning?

an algorithm that can improve it performance using
training datas

x— y=f(x;0) —VY

@ is a vector of parameters (large) computed from a training database

function f cannot be defined with rules by hands

face detection, speech recognition, stock prediction,...

g
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What is Machine Learning? FascAL

an algorithm that can improve it performance using
training datas

X— y=f(x;0) —Y
@ is a vector of parameters (large) computed from a training database

if y is a discret: classification
if y is continus: regression

Introduction to Deep Learning k
Machine Learning I,"
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The machine learning framework

» Apply a prediction function to a feature representation of the
image to get the desired output: (example of classification)

f(EJ) = “apple”
f(R) = “tomato”
f(Bs) = “cow”
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Learn a decision function into a feature space g
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Model selection (for regression) k
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Overfitting can be reduced by increasing the training size
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Example 1:
hand written digit recognition

Xx— y=f(x;0) —Y

o / 2- % q represent input image as a vector:
x € IRT%
S| |b||7]2 A

Images are 28 x 28 pixels learn function f:
fix—{0,1,2,3,4,5,6,7,8,9}

this is a classification problem

P
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Example 1:
hand written digit recognition
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x— y=f(x;0) —Y

we need an annotated dataset
(supervised learning)
6000 samples to learn the
parameter vector @

Training based systems can
achieved a test error of 0.4%

S
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Example 2:
vehicle detection

X— y=f(x;0) —V¥

we need an annotated dataset
(supervised learning)
samples to learn the parameter
vector @

y ey
Mhalla PhD: Pascal Institute, 2017

S
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Example 3:
sensori-motor estimation

stereo-vision focusing

Frangois de la Bourdonnaye, PhD, 2017; IP

PAsSCAL

Xx— y=f(x;0) — Y

we need an annotated dataset
(supervised learning)
6000 samples to learn the
parameter vector @

image center
object detection
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Decade Summary

<1950s | Statistical methods are discovered and refined.

1950s Pioneering machine learning research is conducted using simple algorithms.

1960s | Bayesian methods are introduced for probabilistic inference in machine learning[1].

1970s 'Al Winter' caused by pessimism about machine learning effectiveness.

1980s Rediscovery of backpropagation causes a resurgence in machine learning research.

Work on machine learning shifts from a knowledge-driven approach to a data-driven approach.
1990s Scientists begin creating programs for computers to analyze large amounts of data Support
vector machines and recurrent neural networks become popular.

Kernel methods grow in popularity[3], and competitive machine learning becomes more

Learning based approaches

Training Data

PAscAL

Supervised ( )
i All Labeled Data \ Model :
Semi- Some Labeled Data
Supervised e Model
Learning Lots of Unlabeled

Data
skl Al Unlabeled Data Model

2000s widespread[4].
2010s Deep learning becomes feasible, which leads to machine learning becoming integral to
many widely used software services and applications.
https://en.wikipedia.org/wiki/Timeline_of_machine_learning b
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Datasets
Dataset
Train Validate Test
q
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Over-learning
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Over-learning

A —
accuracy tralmng accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting
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Evaluation criteria (ROC curve)

True Positive Rate
—_ b L2 s O\~ 00 \D —

0.1 2 3 4 5 6 7 8 91
False Positive Rate
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Evaluation criteria (classification)
Accuracy on test set:
The rate of correct classification on testing set
Error Rate on test set:
the percentage of wrong predictions on test set
Confusion matrix
Speed and scalability:
the time to build the classifier and to classify new sample, and the scalability
with respect to the data size
Robustness:
handling noise and missing values
P
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Evaluation criteria (recall precision curve)
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Evaluation criteria (detection)

Intersection over Union (loU) for object detection

Image

Image

Introduction sigma

Supervised classification

parametric methods
- Bayesian classifiers

AAAAAAAA

non parametric methods
- K nearest neighbours

- SVM - Kernel density estimation

- Random forest
- Neural networks
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| Area of Overlap
oU =

Area of Union

P
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Starred algorthims

- bayes rule

- Kkppv
- svm
- adaboost

- neural networks
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