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Abstract

This paper addresses the problem of Face Alignment for
a single image. We show how an ensemble of regression
trees can be used to estimate the face’s landmark positions
directly from a sparse subset of pixel intensities, achieving
super-realtime performance with high quality predictions.
We present a general framework based on gradient boosting
for learning an ensemble of regression trees that optimizes
the sum of square error loss and naturally handles missing
or partially labelled data. We show how using appropriate
priors exploiting the structure of image data helps with ef-
ficient feature selection. Different regularization strategies
and its importance to combat overfitting are also investi-
gated. In addition, we analyse the effect of the quantity of
training data on the accuracy of the predictions and explore
the effect of data augmentation using synthesized data.

1. Introduction
In this paper we present a new algorithm that performs

face alignment in milliseconds and achieves accuracy supe-
rior or comparable to state-of-the-art methods on standard
datasets. The speed gains over previous methods is a con-
sequence of identifying the essential components of prior
face alignment algorithms and then incorporating them in
a streamlined formulation into a cascade of high capacity
regression functions learnt via gradient boosting.

We show, as others have [8, 2], that face alignment can
be solved with a cascade of regression functions. In our case
each regression function in the cascade efficiently estimates
the shape from an initial estimate and the intensities of a
sparse set of pixels indexed relative to this initial estimate.
Our work builds on the large amount of research over the
last decade that has resulted in significant progress for face
alignment [9, 4, 13, 7, 15, 1, 16, 18, 3, 6, 19]. In particular,
we incorporate into our learnt regression functions two key
elements that are present in several of the successful algo-
rithms cited and we detail these elements now.

Figure 1. Selected results on the HELEN dataset. An ensemble
of randomized regression trees is used to detect 194 landmarks on
face from a single image in a millisecond.

The first revolves around the indexing of pixel intensi-
ties relative to the current estimate of the shape. The ex-
tracted features in the vector representation of a face image
can greatly vary due to both shape deformation and nui-
sance factors such as changes in illumination conditions.
This makes accurate shape estimation using these features
difficult. The dilemma is that we need reliable features to
accurately predict the shape, and on the other hand we need
an accurate estimate of the shape to extract reliable features.
Previous work [4, 9, 5, 8] as well as this work, use an it-
erative approach (the cascade) to deal with this problem.
Instead of regressing the shape parameters based on fea-
tures extracted in the global coordinate system of the image,
the image is transformed to a normalized coordinate system
based on a current estimate of the shape, and then the fea-
tures are extracted to predict an update vector for the shape
parameters. This process is usually repeated several times
until convergence.

The second considers how to combat the difficulty of the
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inference/prediction problem. At test time, an alignment al-
gorithm has to estimate the shape, a high dimensional vec-
tor, that best agrees with the image data and our model of
shape. The problem is non-convex with many local optima.
Successful algorithms [4, 9] handle this problem by assum-
ing the estimated shape must lie in a linear subspace, which
can be discovered, for example, by finding the principal
components of the training shapes. This assumption greatly
reduces the number of potential shapes considered during
inference and can help to avoid local optima. Recent work
[8, 11, 2] uses the fact that a certain class of regressors are
guaranteed to produce predictions that lie in a linear sub-
space defined by the training shapes and there is no need
for additional constraints. Crucially, our regression func-
tions have these two elements.

Allied to these two factors is our efficient regression
function learning. We optimize an appropriate loss func-
tion and perform feature selection in a data-driven manner.
In particular, we learn each regressor via gradient boosting
[10] with a squared error loss function, the same loss func-
tion we want to minimize at test time. The sparse pixel set,
used as the regressor’s input, is selected via a combination
of the gradient boosting algorithm and a prior probability on
the distance between pairs of input pixels. The prior distri-
bution allows the boosting algorithm to efficiently explore
a large number of relevant features. The result is a cascade
of regressors that can localize the facial landmarks when
initialized with the mean face pose.

The major contributions of this paper are

1. A novel method for alignment based on ensemble of
regression trees that performs shape invariant feature
selection while minimizing the same loss function dur-
ing training time as we want to minimize at test time.

2. We present a natural extension of our method that han-
dles missing or uncertain labels.

3. Quantitative and qualitative results are presented that
confirm that our method produces high quality predic-
tions while being much more efficient than the best
previous method (Figure 1).

4. The effect of quantity of training data, use of partially
labeled data and synthesized data on quality of predic-
tions are analyzed.

2. Method
This paper presents an algorithm to precisely estimate

the position of facial landmarks in a computationally effi-
cient way. Similar to previous works [8, 2] our proposed
method utilizes a cascade of regressors. In the rest of this
section we describe the details of the form of the individual
components of the cascade and how we perform training.

2.1. The cascade of regressors

To begin we introduce some notation. Let xi ∈ R2 be
the x, y-coordinates of the ith facial landmark in an image I .
Then the vector S = (xT1 ,x

T
2 , . . . ,x

T
p )T ∈ R2p denotes the

coordinates of all the p facial landmarks in I . Frequently,
in this paper we refer to the vector S as the shape. We use
Ŝ(t) to denote our current estimate of S. Each regressor,
rt(·, ·), in the cascade predicts an update vector from the
image and Ŝ(t) that is added to the current shape estimate
Ŝ(t) to improve the estimate:

Ŝ(t+1) = Ŝ(t) + rt(I, Ŝ
(t)) (1)

The critical point of the cascade is that the regressor rt
makes its predictions based on features, such as pixel in-
tensity values, computed from I and indexed relative to the
current shape estimate Ŝ(t). This introduces some form of
geometric invariance into the process and as the cascade
proceeds one can be more certain that a precise semantic
location on the face is being indexed. Later we describe
how this indexing is performed.

Note that the range of outputs expanded by the ensemble
is ensured to lie in a linear subspace of training data if the
initial estimate Ŝ(0) belongs to this space. We therefore do
not need to enforce additional constraints on the predictions
which greatly simplifies our method. The initial shape can
simply be chosen as the mean shape of the training data
centered and scaled according to the bounding box output
of a generic face detector.

To train each rt we use the gradient tree boosting algo-
rithm with a sum of square error loss as described in [10].
We now give the explicit details of this process.

2.2. Learning each regressor in the cascade

Assume we have training data (I1,S1), . . . , (In,Sn)
where each Ii is a face image and Si its shape vector.
To learn the first regression function r0 in the cascade we
create from our training data triplets of a face image, an
initial shape estimate and the target update step, that is,
(Iπi

, Ŝ
(0)
i ,∆S

(0)
i ) where

πi ∈ {1, . . . , n} (2)

Ŝ
(0)
i ∈ {S1, . . . ,Sn}\Sπi

and (3)

∆S
(0)
i = Sπi

− Ŝ
(0)
i (4)

for i = 1, . . . , N . We set the total number of these triplets to
N = nR where R is the number of initializations used per
image Ii. Each initial shape estimate for an image is sam-
pled uniformly from {S1, . . . ,Sn} without replacement.

From this data we learn the regression function r0 (see
algorithm 1), using gradient tree boosting with a sum of
square error loss. The set of training triplets is then updated



to provide the training data, (Iπi
, Ŝ

(1)
i ,∆S

(1)
i ), for the next

regressor r1 in the cascade by setting (with t = 0)

Ŝ
(t+1)
i = Ŝ

(t)
i + rt(Iπi

, Ŝ
(t)
i ) (5)

∆S
(t+1)
i = Sπi

− Ŝ
(t+1)
i (6)

This process is iterated until a cascade of T regressors
r0, r1, . . . , rT−1 are learnt which when combined give a
sufficient level of accuracy.

As stated each regressor rt is learned using the gradi-
ent boosting tree algorithm. It should be remembered that
a square error loss is used and the residuals computed in
the innermost loop correspond to the gradient of this loss
function evaluated at each training sample. Included in
the statement of the algorithm is a learning rate parame-
ter 0 < ν ≤ 1 also known as the shrinkage factor. Set-
ting ν < 1 helps combat over-fitting and usually results in
regressors which generalize much better than those learnt
with ν = 1 [10].

Algorithm 1 Learning rt in the cascade

Have training data {(Iπi , Ŝ
(t)
i ,∆S

(t)
i )}Ni=1 and the learning

rate (shrinkage factor) 0 < ν < 1

1. Initialise

f0(I, Ŝ(t)) = arg min
γ∈R2p

N∑
i=1

‖∆S
(t)
i − γ‖2

2. for k = 1, . . . ,K:

(a) Set for i = 1, . . . , N

rik = ∆S
(t)
i − fk−1(Iπi , Ŝ

(t)
i )

(b) Fit a regression tree to the targets rik giving a weak
regression function gk(I, Ŝ(t)).

(c) Update

fk(I, Ŝ(t)) = fk−1(I, Ŝ(t)) + ν gk(I, Ŝ(t))

3. Output rt(I, Ŝ(t)) = fK(I, Ŝ(t))

2.3. Tree based regressor

The core of each regression function rt is the tree based
regressors fit to the residual targets during the gradient
boosting algorithm. We now review the most important im-
plementation details for training each regression tree.

2.3.1 Shape invariant split tests

At each split node in the regression tree we make a decision
based on thresholding the difference between the intensities
of two pixels. The pixels used in the test are at positions u
and v when defined in the coordinate system of the mean
shape. For a face image with an arbitrary shape, we would
like to index the points that have the same position rela-
tive to its shape as u and v have to the mean shape. To
achieve this, the image can be warped to the mean shape
based on the current shape estimate before extracting the
features. Since we only use a very sparse representation of
the image, it is much more efficient to warp the location
of points as opposed to the whole image. Furthermore, a
crude approximation of warping can be done using only a
global similarity transform in addition to local translations
as suggested by [2].

The precise details are as follows. Let ku be the index
of the facial landmark in the mean shape that is closest to u
and define its offset from u as

δxu = u− x̄ku

Then for a shape Si defined in image Ii, the position in Ii
that is qualitatively similar to u in the mean shape image is
given by

u′ = xi,ku +
1

si
RTi δxu (7)

where si andRi are the scale and rotation matrix of the sim-
ilarity transform which transforms Si to S̄, the mean shape.
The scale and rotation are found to minimize

p∑
j=1

‖x̄j − (siRi xi,j + ti)‖2 (8)

the sum of squares between the mean shape’s facial land-
mark points, x̄j’s, and those of the warped shape. v′ is sim-
ilarly defined. Formally each split is a decision involving 3
parameters θ = (τ,u,v) and is applied to each training and
test example as

h(Iπi , Ŝ
(t)
i ,θ) =

{
1 Iπi

(u′)− Iπi
(v′) > τ

0 otherwise
(9)

where u′ and v′ are defined using the scale and rotation
matrix which best warp Ŝ

(t)
i to S̄ according to equation (7).

In practice the assignments and local translations are de-
termined during the training phase. Calculating the similar-
ity transform, at test time the most computationally expen-
sive part of this process, is only done once at each level of
the cascade.



2.3.2 Choosing the node splits

For each regression tree, we approximate the underlying
function with a piecewise constant function where a con-
stant vector is fit to each leaf node. To train the regression
tree we randomly generate a set of candidate splits, that is
θ’s, at each node. We then greedily choose the θ∗, from
these candidates, which minimizes the sum of square error.
If Q is the set of the indices of the training examples at a
node, this corresponds to minimizing

E(Q,θ) =
∑

s∈{l,r}

∑
i∈Qθ,s

‖ri − µθ,s‖2 (10)

whereQθ,l is the indices of the examples that are sent to the
left node due to the decision induced by θ, ri is the vector
of all the residuals computed for image i in the gradient
boosting algorithm and

µθ,s =
1

|Qθ,s|
∑
i∈Qθ,s

ri, for s ∈ {l, r} (11)

The optimal split can be found very efficiently because if
one rearranges equation (10) and omits the factors not de-
pendent on θ then one can see that

arg min
θ

E(Q,θ) = arg max
θ

∑
s∈{l,r}

|Qθ,s|µTθ,s µθ,s

Here we only need to compute µθ,l when evaluating differ-
ent θ’s, as µθ,r can be calculated from the average of the
targets at the parent node µ and µθ,l as follows

µθ,r =
|Q|µ− |Qθ,l|µθ,l

Qθ,r

2.3.3 Feature selection

The decision at each node is based on thresholding the dif-
ference of intensity values at a pair of pixels. This is a rather
simple test, but it is much more powerful than single in-
tensity thresholding because of its relative insensitivity to
changes in global lighting. Unfortunately, the drawback of
using pixel differences is the number of potential split (fea-
ture) candidates is quadratic in the number of pixels in the
mean image. This makes it difficult to find good θ’s with-
out searching over a very large number of them. However,
this limiting factor can be eased, to some extent, by taking
the structure of image data into account. We introduce an
exponential prior

P (u,v) ∝ e−λ‖u−v‖ (12)

over the distance between the pixels used in a split to en-
courage closer pixel pairs to be chosen.

We found using this simple prior reduces the prediction
error on a number of face datasets. Figure 4 compares the
features selected with and without this prior, where the size
of the feature pool is fixed to 20 in both cases.

2.4. Handling missing labels
The objective of equation (10) can be easily extended to

handle the case where some of the landmarks are not la-
beled in some of the training images (or we have a mea-
sure of uncertainty for each landmark). Introduce variables
wi,j ∈ [0, 1] for each training image i and each landmark j.
Setting wi,j to 0 indicates that the landmark j is not labeled
in the ith image while setting it to 1 indicates that it is. Then
equation (10) can be updated to

E(Q,θ) =
∑

s∈{l,r}

∑
i∈Qθ,s

(ri − µθ,s)
TWi(ri − µθ,s)

where Wi is a diagonal matrix with the vector
(wi1, wi1, wi2, wi2, . . . , wip, wip)

T on its diagonal and

µθ,s =

 ∑
i∈Qθ,s

Wi

−1 ∑
i∈Qθ,s

Wi ri, for s ∈ {l, r}

(13)

The gradient boosting algorithm must also be modified
to account of these weight factors. This can be done simply
by initializing the ensemble model with the weighted aver-
age of targets, and fitting regression trees to the weighted
residuals in algorithm 1 as follows

rik = Wi(∆S
(t)
i − fk−1(Iπi , Ŝ

(t)
i )) (14)

3. Experiments
Baselines: To accurately benchmark the performance

of our proposed method, an ensemble of regression trees
(ERT) we created two more baselines. The first is based
on randomized ferns with random feature selection (EF)
and the other is a more advanced version of this with cor-
relation based feature selection (EF+CB) which is our re-
implementation of [2]. All the parameters are fixed for all
three approaches.

EF uses a straightforward implementation of random-
ized ferns as the weak regressors within the ensemble and
is the fastest to train. We use the same shrinkage method as
suggested by [2] to regularize the ferns.

EF+CB uses a correlation based feature selection
method that projects the target outputs, ri’s, onto a random
direction, w, and chooses the pairs of features (u,v) s.t.
Ii(u

′) − Ii(v′) has the highest sample correlation over the
training data with the projected targets wT ri.

Parameters: Unless specified, all the experiments are
performed with the following fixed parameter settings. The
number of strong regressors, rt, in the cascade is T = 10
and each rt comprises ofK = 500 weak regressors gk. The
depth of the trees (or ferns) used to represent gk is set to
F = 5. At each level of the cascade P = 400 pixel loca-
tions are sampled from the image. To train the weak regres-
sors, we randomly sample a pair of these P pixel locations



(a) T = 0 (b) T = 1 (c) T = 2 (d) T = 3 (e) T = 10 (f) Ground truth

Figure 2. Landmark estimates at different levels of the cascade initialized with the mean shape centered at the output of a basic Viola &
Jones[17] face detector. After the first level of the cascade, the error is already greatly reduced.

according to our prior and choose a random threshold to cre-
ate a potential split as described in equation (9). The best
split is then found by repeating this process S = 20 times,
and choosing the one that optimizes our objective. To create
the training data to learn our model we useR = 20 different
initializations for each training example.

Performance: The runtime complexity of the algorithm
on a single image is constant O(TKF ). The complexity of
the training time depends linearly on the number of train-
ing data O(NDTKFS) where N is the number of training
data and D is dimension of the targets. In practice with a
single CPU our algorithm takes about an hour to train on
the HELEN[12] dataset and at runtime it only takes about
one millisecond per image.

Database: Most of the experimental results reported are
for the HELEN[12] face database which we found to be the
most challenging publicly available dataset. It consists of a
total of 2330 images, each of which is annotated with 194
landmarks. As suggested by the authors we use 2000 im-
ages for training data and the rest for testing.

We also report final results on the popular LFPW[1]
database which consists of 1432 images. Unfortunately, we
could only download 778 training images and 216 valid test
images which makes our results not directly comparable to
those previously reported on this dataset.

Comparison: Table 1 is a summary of our results com-
pared to previous algorithms. In addition to our baselines,
we have also compared our results with two variations of
Active Shape Models, STASM[14] and CompASM[12].

[14] [12] EF EF+CB EF+CB (5) EF+CB (10) ERT

Error .111 .091 .069 .062 .059 .055 .049

Table 1. A summary of the results of different algorithms on the
HELEN dataset. The error is the average normalized distance
of each landmark to its ground truth position. The distances are
normalized by dividing by the interocular distance. The number
within the bracket represents the number of times the regression
algorithm was run with a random initialization. If no number is
displayed then the method was initialized with the mean shape. In
the case of multiple estimations the median of the estimates was
chosen as the final estimate for the landmark.

The ensemble of regression trees described in this pa-
per significantly improves the results over the ensemble of

ferns. Figure 3 shows the average error at different levels
of the cascade which shows that ERT can reduce the error
much faster than other baselines. Note that we have also
provided the results of running EF+CB multiple times and
taking the median of final predictions. The results show that
similar error rate to EF+CB can be achieved by our method
with an order of magnitude less computation.

We have also provided results for the widely used
LFPW[1] dataset (Table 2). With our EF+CB baseline
we could not replicate the numbers reported by [2]. (This
could be due to the fact that we could not obtain the whole
dataset.) Nevertheless our method surpasses most of the
previously reported results on this dataset taking only a frac-
tion of the computational time needed by any other method.

[1] [2] EF EF+CB EF+CB (5) EF+CB (10) ERT

Error .040 .034 .051 .046 .043 .041 .038

Table 2. A comparison of the different methods when applied to
the LFPW dataset. Please see the caption for table 1 for an expla-
nation of the numbers.

Feature Selection: Table 4 shows the effect of using
equation (12) as a prior on the distance between pixels used
in a split instead of a uniform prior on the final results. The
parameter λ determines the effective maximum distance be-
tween the two pixels in our features and was set to 0.1 in
our experiments. Selecting this parameter by cross valida-
tion when learning each strong regressor, rt, in the cascade
could potentially lead to a more significant improvement.
Figure 4 is a visualization of the selected pairs of features
when the different priors are used.

Uniform Exponential

Error .053 .049

Table 3. The effect of using different priors for feature selection
on the final average error. An exponential prior is applied on the
Euclidean distance between the two pixels defining a feature, see
equation (12).

Regularization: When using the gradient boosting algo-
rithm one needs to be careful to avoid overfitting. To obtain
lower test errors it is necessary to perform some form of
regularization. The simplest approach is shrinkage. This
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Figure 3. A comparison of different methods on HELEN(a) and LFPW(b) dataset. EF is the ensemble of randomized ferns and EF+CB
is the ensemble of ferns with correlation based feature selection initialized with the mean shape. We also provide the results of taking the
median of results of various initializations (5 and 10) as suggested by [2]. The results show that the proposed ensemble of regression trees
(ERT) initialized with only the mean shape consistently outperforms the ensemble of ferns baseline and it can reach the same error rate
with much less computation.

(a) Uniform prior (b) Exponential prior

Figure 4. Different features are selected if different priors are used.
The exponential prior biases the selection towards pairs of pixels
which are closer together.

involves setting the learning rate ν in the gradient boosting
algorithm to less than 1 (Here we set ν = 0.1). Regular-
ization can also be achieved by averaging the predictions
of multiple regression trees. This way, gk correspond to a
random forest as opposed to one tree and we set ν = 1.
Therefore, at each iteration of the gradient boosting algo-
rithm instead of fitting one regression tree to the residuals,
we fit multiple trees (10 in our experiments) and average the
results. (The total number of trees is fixed in all the cases.)

In terms of the bias and variance trade off, the gradient
boosting algorithm always decreases the bias but increases
the variance. But regularizing by shrinkage or averaging
effectively reduces the variance by learning multiple over-
lapping models.

Unregularized Shrinkage Averaging

Error .103 .049 .049

Table 4. A comparison of the results on the HELEN dataset when
different forms of regularization are applied. We found similar
results when using either shrinkage or averaging given the same
total number of trees in the ensemble.

We achieved similar results using the averaging regular-
ization compared to the more standard shrinkage method.
However, regularization by averaging has the advantage of
being more scalable, as it enables parallelization during
training time which is especially important for solving large
scale problems.

Cascade: At each level of the cascade the second level
regressors can only observe a fixed and sparse subset of the
shape indexed features. Indexing the features based on the
current estimate is a crude way of warping the image with a
small cost. Table 5 shows the final error rate with and with-
out using the cascade. We found significant improvement
by using this iterative mechanism which is in line with pre-
viously reported results [8, 2] (For a fair comparison here
we fixed the total number of observed features to 10 × 400
points.)

# Trees 1 × 500 1 × 5000 10 × 500

Error .085 .074 .049

Table 5. The above results show the importance of using a cascade
of regressors as opposed to a single level ensemble.

Training Data: To test the performance of our method
with respect to the number of training images, we trained
different models from differently sized subsets of the train-
ing data. Table 6 summarizes the final results and figure
5 is a plot of the error at each level of the cascade. Using
many levels of regressors is most useful when we have a
large number of training examples.

We repeated the same experiments with the total number
of augmented examples fixed but varied the combination of
initial shapes used to generate a training example from one
labelled face example and the number of annotated images
used to learn the cascade (Table 7).

Augmenting the training data using different initial



# Examples 100 200 500 1000 2000

Error .090 .074 .059 .054 .049

Table 6. Final error rate with respect to the number of training
examples. When creating training data for learning the cascade
regressors each labelled face image generated 20 training exam-
ples by using 20 different labelled faces as the initial guess for the
face’s shape.
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Figure 5. The average error at each level of the cascade is plotted
with respect to number of training examples used. Using many
levels of regressors is most useful when the number of training
examples is large.

# Examples 100 200 500 1000 2000
# Initial Shapes 400 200 80 40 20

Error .062 .057 .054 .052 .049

Table 7. Here the effective number of training examples is fixed but
we use different combinations of the number of training images
and the number of initial shapes used for each labelled face image.

shapes expands the dataset in terms of shape. Our results
show this type of augmentation does not fully compensate
for a lack of annotated training images. Though the rate of
improvement gained by increasing the number of training
images quickly slows after the first few hundred images.

Partial annotations: Table 8 shows the results of using
partially annotated data. 200 training examples are fully
annotated and the rest are only partially annotated.

# Examples 200 200+1800(25%) 200+1800(50%) 2000

Error .074 .067 .061 .049

Table 8. Results of using partially labelled data. 200 examples are
always fully annotated. The values inside the parenthesis show the
percentage of landmarks observed.

The results show that we can gain substantial improve-
ment by using partially labelled data. Yet the improvement
displayed may not be saturated because we know that the
underlying dimension of the shape parameters are much
lower than the dimension of the landmarks (194×2). There
is, therefore, potential for a more significant improvement
with partial labels by taking explicit advantage of the corre-
lation between the position of landmarks. Note that the gra-

dient boosting procedure described in this paper does not
take advantage of the correlation between landmarks. This
issue could be addressed in a future work.

4. Conclusion
We described how an ensemble of regression trees can

be used to regress the location of facial landmarks from a
sparse subset of intensity values extracted from an input im-
age. The presented framework is faster in reducing the error
compared to previous work and can also handle partial or
uncertain labels. While major components of our algorithm
treat different target dimensions as independent variables, a
natural extension of this work would be to take advantage of
the correlation of shape parameters for more efficient train-
ing and a better use of partial labels.
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