
Clermont Auvergne University Augmented reality: Practical 4

Snapchat like AR face filters

1 Introduction

The objective of this session is to work on an Augmented Reality application using several
machine learning algorithms. You can get more information about lectures and associated
practical sessions on my website: http://chateaut.fr. Essential needed knowledges in-
clude a beginning level of computer science (Linux, Python programming with Sklearn,
Numpy, Matplotlib, Opencv and Pytorch (for sessions on Deep Learning)) and applied
mathematics.

The application of this practical is to design an algorithm that superimpose a mask on
a face (a snapchat like filter). The main parts of the method are illustrated on fig 1:

Figure 1: Illustration of the method. From left to right: detected face, 2D keypoints, result
of AR

1. Detect faces into an image (using a HOG/SVM approach). [1]

2. Estimate face image keypoints using a regressor based method. [2]

3. Compute the position of the center of each eye.

4. Compute corresponding mask image by warping the original image

5. superimpose the warped mask with the input image and display

2 Face Detection

The first step consists in applying a face detector to the original image. The selected
face detector used here is based on Dalal and Triggs work [1]. It is composed by three
components : 1) a sliding windows strategy, 2) an histogram of gradient feature extractor

T. Chateau 1 page 1/4



Clermont Auvergne University Augmented reality: Practical 4

and 3) a linear support vector machine (SVM) classifier. We will use the python wrapper
of dlib library1 :

detector = dlib.get_frontal_face_detector()

This function defines the object detector.

dets = detector(img, 1)

This function returns the detections achieved on the image img. dets is a list of regions
of interest detected. The ith detection provides it position by:

dets[i].left(), dets[i].right(), dets[i].width(), dets[i].height()

You should work from the script face_detection1.py

1. Modify the script to initialize the detector and apply it to one image.

2. Test the algorithm on several images: which are the limitations?

3. Modify the script to display images with several faces (you may write a loop on
dets using the syntax: for k, d in enumerate(dets): where k is a count and d
is a detection). Test your script on the multiple faces images samples of directory
images.

4. Test the detector for the images in the directory images/orientation and conclude
on its limitations.

3 Keypoint Detection

This step estimates the position of face keypoints in the image. The method used is based
on the work of [2]. this paper proposes a cascaded regressor to estimate keypoints in a
coarse to fine strategy from an initial mean shape.

In dlib library, the keypoint regressor is initialized by:

predictor = dlib.shape_predictor(predictor_path)

with predictor_path: the path+filename of the dat file of the keypoints model learnt
(shape_predictor_68_face_landmarks.dat for example) Getting keypoints from an im-
age, the detection is achieved by:

keypoints = predictor(image, d)

This algorithm returns a list of keypoints (68 in the classic model) from which x and
y coordinates are given by: keypoint.part(0).x and keypoint.part(0).y for the first
point.

1. You have to save the file face_detection1.py to landmark_detection1.py and
modify it to extract and display keypoints for an image containing only one face.
You can use the function plt.plot(x,y,’+r’) to display one point.

2. Test your script for several poses (directory images/orientations) and conclude on
the limitations.

1Dlib is a computer vision and machine learning powerful library: http://dlib.net

T. Chateau 2 page 2/4



Clermont Auvergne University Augmented reality: Practical 4

4 Warping and creating the AR image

The center position for each eye can be computed from the keypoints (eg: mean position
between left and right point for each eye). The figure 2 shows the position of each detected
keypoint.

1. Compute the center position of each eye

2. The mask to be superimposed is the one of the file mask.png. The simplest way to
warp this mask on the initial image is to apply an Affine Warping: (x2 = ax.x1 + bx
and y2 = a2.y1+ b2 with (x1, y1), the coordinates of a point into the mask image and
(x2, y2) the coordinates of a point into the initial image. Here, the four parameters
are estimated using both center of eye matching. The Warping will be applied using
the opencv function : dst = cv2.warpAffine(immask,M,(cols,rows)). Matrix M
is a 3 × 3 transformation matrix. The result of the warping should be an image of
the same résolution of the input image with the mask positionned at the right place.
Save or Display this image to check your code.

5 Superimpose

It’s quite easy to superimpose the mask using the alpha channel as a binary mask on the
warping mask image in order to overlay only the mask image pixels with alpha channel
egal to one in the original image.

6 additional question

1. Using an homography transformation instead of a simple translation and scale one
should be better. You have to manually link at least two more positions between the
keypoints and the mask image. IT is then possible to compute the corresponding
homography and to warp the mask image using this new transformation.

2. Modify the code to apply the mask on the video sequence provided by the webcam
(using a resolution of 640x480).

3. To increase the processing time, it is possible to:

• reduce the image size (ie: VGA using the opencv command:
ret = cap.set(cv2.CAP_PROP_FRAME_WIDTH,640)
ret = cap.set(cv2.CAP_PROP_FRAME_HEIGHT,480)

• since the face detection is most time expensive part of the method, it is possible
to swap, after the first image, to a tracking mode by initializing the keypoint
detection directly from the previous image.

References

[1] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detec-
tion. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International

T. Chateau 3 page 3/4



Clermont Auvergne University Augmented reality: Practical 4

Conference on Computer Vision & Pattern Recognition (CVPR ’05), volume 1, pages
886–893, San Diego, United States, June 2005. IEEE Computer Society.

[2] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an en-
semble of regression trees. 2014 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1867–1874, 2014.

Figure 2: The widely used 68 points model

T. Chateau 4 page 4/4


