
Clermont Auvergne University Machine Learning: Practical 1

Normal distributions and Naive Bayes classifier

1 Introduction

The objective of this session is to practice with Normal distributions and Naive Bayes
classifiers, following the Machine Learning course. You can get more information about
lectures and associated practical sessions on my website: http://chateaut.fr. Essential
needed knowledges includes a beginning level of computer science (Linux, Python pro-
gramming with Sklearn, Numpy, Matplotlib, Opencv and Pytorch (for sessions on Deep
Learning)) and applied mathematics.

2 Normal distributions

The general equation for a d dimensions normal distribution, denoted N(µ, Σ) is:

p(x) =
1

(2π)d/2 |Σ|1/2
exp

[
−
1

2
(x− µ)′Σ−1(x− µ)

]
(1)

with :

• µ : mean vector

µ = E[x] =

∫
xp(x)dx

• Σ : covariance matrix
Σ = E[(x− µ)(x− µ)′]

For a 2 dimensional distribution, the shape of the resulting curve is related to the parame-
ters of the distribution: the mean vector µ and the covariance matrix Σ. There are several
specific normal distributions, listed below

2.1 Independent normal distribution with same variance along each
component

This is a special case in which each component of the ramdom vector independant and
with the same variance. The Covariance matrix is written by:

Σ =


σ2 0 . 0
0 σ2 . 0
. . . 0
0 . 0 σ2


The python script ML_p11.py, presented on listing 1 page ?? displays a 2D normal distri-
bution from a given mean vector and covariance matrix.

You have to modify this script to show the shape of the normal distribution for the
following set of parameters:

T. Chateau 1 page 1/5

Clermont Auvergne University Machine Learning: Practical 1

• µ = (0.5, 0.5)T and σ2 = 0.2

• µ = (0, 0)T and σ2 = 0.4

• µ = (−0.5, 0.5)T and σ2 = 0.6

2.2 Independent normal distribution with different variance on each
component

For an independent normal distribution (diagonal covariance matrix) with different vari-
ance on each component, the covariance matrix is written:

Σ =


σ21 0 . 0
0 σ22 . 0
. . . 0
0 . 0 σ2d


You should modify ML_p11.py to visualize the shape of the normal distribution for a

mean value µ = (0.5, 0.5)T and:

1.

Σ =

(
0.3 0
0 0.1

)
2.

Σ =

(
0.1 0
0 0.3

)
2.3 The generic normal distribution

The generic expression of the parameters associated to a normal distribution is:

µ =

µ1.
µd



Σ =


σ21 σ212 . σ21d
σ221 σ22 . σ22d
. . . σ2(d−1)d
σ2d1 . σ2d(d−1) σ2d


You should modify ML_p11.py to visualize the shape of the normal distribution for a mean
value µ = (0.5, 0.5)T and:

1.

Σ =

(
1 0.6
0.6 0.7

)
2.

Σ =

(
1 1
1 2

)

T. Chateau 2 page 2/5

Clermont Auvergne University Machine Learning: Practical 1

Figure 1: samples of images for the two classes of flowers that should be classified.

3 Gaussian distribution and Naive Bayes Classifier: applica-
tion to flower classification

This section illustrates, on a toy example (flower classification) how to build gaussian
distribution from real datas and classify an unknown sample using a Naive Bayes classifier.

3.1 Training the classifier

Figure 1 illustrates the two classes of flowers and figure 2 shows an example of extracted
flowers from acquired images. Both a training and testing dataset have been created. Each
class has 10 samples in each dataset. The learning process is divided into two steps:

1. Feature extraction: a feature vector should be created for each sample. There exists
two categories of features: 1) hand-crafted features and 2) Deep Neural Network
based features. Here we focus on the first category. It seems that colour is a good
way to classify each class. We use a 2D feature vector composed by the mean red
and green components of the image.

2. Estimate parameters of the gaussian pdf distribution associated to each class (likeli-
hood): as we have written before, the parameters are given by the mean vector and
the covariance matrix, computed from the training set.

The script ML_p12.py loads samples, computes features from a dataset and displays
both a feature space representation of the training set and a 3D representation of the
normal distributions associated to the two classes of the training set.

You should complete this script in order to compute the covariance matrices and the
mean vector from the feature vectors X1 for class 1 and X2 for class 2.

3.2 Testing the naive Bayes classifier

The naive bayes classifier is a simple but powerfull framework. It needs a parametric
representation of probability density functions (here we use a gaussian model). Using this
parametric representation, the Bayes rule can be applied:

p(ωi|X) =
p(X|ωi)p(ωi)

p(X)

T. Chateau 3 page 3/5

Clermont Auvergne University Machine Learning: Practical 1

Figure 2: samples of flowers extracted from the original images: the two left images for
class 1 and the two right images for class 2

with {ω1, ω2} the two classes, p(X|ωi) the likelihood function (here the gaussian pdf dis-
tribution computed before) and p(ωi) the prior.

The script ML_p13.py loads samples, computes features from a dataset, applies a Gaus-
sian Naive Bayes classifier (with the library sklearn) and displays a 2D plot in the feature
space of the samples and the decision regions. Moreover, a 3D decision function curve is
displayed.

1. You should run this script and conclude on the performance of the classifier.

2. Now we will work on a second dataset (please change both training_images_path
and testing_images_path) to dataset2. Run the script and conclude on the per-
formances of the classifier. What is the problem?

3. In order to improve the classifier, let convert the RGB colour space to HSV (Hue,
Saturation, Value) space and keep only a 2D mean (H,S) feature vector. The sim-
plest way is to change the flag cv2.COLOR_BGR2RGB in the command
imrgb = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) by the flag cv2.COLOR_BGR2HSV.
Run the script and compare the performances of the new features with the original
ones.

4 Additional questions

1. Dataset 2 has 3 classes. Try to build a script that creates a Gaussian Naive Bayes
classifier for three classes and to compute performance (using the testing dataset) of
the classifier. Graphical display is not needed here.

2. Try to improve the feature extraction step (you may add components such high order
moments (variances) into the feature vector)

Listing 1: Python script to display a 2d normal distribution in a 3D view
#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
"""
Created on Tue Sep 11 07 :56 :48 2018
Pra c t i c a l 1 on Machine Learning Course , par t 1 :
python s c r i p t to d i s p l a y in a 3D view a 2−d normal law
@author : t h i e r r y cha t e au

T. Chateau 4 page 4/5

Clermont Auvergne University Machine Learning: Practical 1

"""

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . s t a t s import mult ivar iate_normal
from mpl_toolk i ts . mplot3d import Axes3D

#Parameters to s e t
mu_x = 0
variance_x = 3

mu_y = 0
variance_y = 15

#Create g r i d and mu l t i v a r i a t e normal
x = np . l i n s p a c e (−10 ,10 ,500)
y = np . l i n s p a c e (−10 ,10 ,500)
X, Y = np . meshgrid (x , y)
pos = np . empty (X. shape + (2 ,))
pos [: , : , 0] = X; pos [: , : , 1] = Y
rv = mult ivar iate_normal ([mu_x, mu_y] , [[variance_x , 0] , [0 , variance_y]])

#Make a 3D p l o t
f i g = p l t . f i g u r e ()
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p lo t_sur face (X, Y, rv . pdf (pos) , cmap=’ v i r i d i s ’ , l i n ew id th=0)
ax . s e t_x labe l (’X␣ ax i s ’)
ax . s e t_y labe l (’Y␣ ax i s ’)
ax . s e t_z l abe l (’Z␣ ax i s ’)
p l t . show ()

T. Chateau 5 page 5/5

