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Introduction

@ Bayes is an optimal classifier (if several assumptions are true) which provides
analytical solutions if P(w;) and p(x|w;) can be formalized.

@ In this framework, learn P(w;) and p(x|w;) is a essential operation.

@ We suppose that an annotated dataset is available (feature vector and
associated class)

@ The aim of the learning step is to estimate both the prior P(w;) and the
likelihood p(x|w;) from a training dataset.

@ Several methods exist to do that.
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Introduction

@ Parametric methods:

o p(x|wj) is modelled by a parametric function f;(x; 8;) if a parameter vector 6;).
(example: Gaussian function)

e Learning consists of estimating the parameter vector 8;) from a training
dataset.

@ Non parametric methods:
e In this case, the pdf. is modelled directly from the training step:

p(x|w;i) = f(x,samples)
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Parametric models

@ We assume that the parametric model (not parameters) of pdf p(x|w;) known

e normal law,
o Gamma law,
o ...

@ Several solutions exist to estimate the unknowns parameter vector 6;:
o Maximum likelihood,

o Bayesien estimation,
o ...
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Parametric models

@ Rq : Here, only the maximum likelihood method is presented ( and for
supervised learning).
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Maximum likelihood

o Given &, E¢, ), c sets of samples that represents the c classes. We assume
that

o the samples are independent
e sets are representative from p(x|w;)

o Hypothesis: The paramtric shape of p(x|w;) is known, and determined by a
parameter vectot 6;.

@ Example: p(x|w;) can be approximated by a normal distribution N(u;,%;). In
this case: 0; = {u;, Z; }.
o If x € RY:

0; = {u1, 2, --ftd, 022,023, .., O2d, 033, 034, -, O3d -+, Odd }
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Maximum likelihood

o Notation: p(x|w;; 6;) stands for p(x|w;) depends on 6;
@ Goal: Estimating the parameter vector 6;

@ since the classes are independent, it is possible de have a separate study for

each class:
E ={Xy1, X2, X3,.., X}
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Maximum likelihood

@ The probability to draw &, given a class follows a random law defined by the
parameter vector 8):

p(€.0) = [] p(X4l0)
k=1

@ We find the an estimation of 0, defined &, which maximizes p(€,0)
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Maximum likelihood

e sif= {91,92, ..,Hp} :
Vo= |2
o We define the expression /(0) = log[p(£|0)] :

1(8) = loglp(X|0)]

k=1
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Maximum likelihood

@ Then,
Vol =V Z log[P(X,|6)]
k=1
e p(£]0) will be maximum if:
Vol =0
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Non parametric models

@ Parametric model — we need to fix the analytic model p(x|w;) :

e Most of models are unimodal (exept.: mixture of Gaussian)
e Strong assumption (if not verified, some results can be wrong)

@ Parametric models deal directly with samples and their spatial repartition.
Les méthodes non paramétriques prennent en compte les échantillons et leur
répartition spatiale dans |'espace des paramétres.

@ la conséquence et une estimation de p(x|w;) plus proche de la réalité
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Non parametric models

The global framework
e Estimation of p(x|w;) or p(w;|x)
@ Given D a domain of the features space (D C R9) which can be considered
as a neighbourhood of the feature vector x for which we want to estimate

p(x|wi)-
@ Hypothesis: p(x|w;) = const. on D

@ then:

plxeD) = [ p(xludx' = plxiw) [ o
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Non Parametric Models

e If V(D) is the hyper-volume of D :
p(x € D) = p(x|wi) V(D)

@ then:
p(x € D)
V(D)

o If t samples, on n total ones belong in the domain D, then:

Vx € Dp(x|w;) ~

t
€D)~ —
p(x € D) p
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Non Parametric Models

e and: | p(x|w;) ~

V(D)

@ Given xq a feature and D(xg) a domain around the deature xo; we want to
build an estimator P(xg|w). So,
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Non Parametric Models

@ Good estimator — converging estimator:

lim P(xo|w) = P(xo|w)

n— oo

Sl

lim = P(xo|w)

n—o0 V(D(xo))
@ The estimator smooths the probability on the neighbourhood of xg

@ The lower D(xo) is, the better the estimator is (closer to the true value)
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Non Parametric Models

@ If D(xp) is too small, many domains won't have any sample, resulting to
p(x|w;) = 0.

@ It is necessary to link the number of samples to the size of the domain. (n
and D(xp), will follow the notation D,(xq)) :

l5(x0|w) - n
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Non Parametric Models

There are 3 necessary conditions for a converging estimator:
Pn(xolw) — p(xolw) si :
Q limpoo V(Da(x0)) =0

Q limyoo ty =400

. th
e llmn—)oo —=0
n
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Non Parametric Models

There are two main categories of non parametric models:

@ link V(Dp(x0)) to n : this is kernel based models (Kernel Density Estimation
also called Parzen windows)

@ link t, according to n adjusting the domain V/(D,(xo)) until k samples
belong to it: this is the k nearest neighbours models
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KDE models

also called Parzen Windows
@ Main idea: working with the domain function D,(xo)

@ example with a hypercube of side h,, :
V(Dy(x0)) = (hn)°

@ the features dimension is R?

@ We define a function ¢(u), egal to 1 inside the unit and centered on the
origin hypercube:
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KDE models

p(u)=1si|uy|<05j=1,.d
©(u) = 0 sinon

If Dp(x0) is a hypercube of side h,, then:

Xp — X
XEDn(X0)<:><p< Oh ):1
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KDE models

The number of samples t, that belongs to the domain D,(xo) is computed by the
following equation:

X0 — X;
where x; is the sample /.

A 1 n 1 Xo — X;
Pulbole) =22 VB, txe) ( by )

i=1

The function ¢ is called kernel of the estimator
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Kernels

@ The kernel must be normalized:

{ o(x) >0Vx € R?
Jrs p(x)dx =1

@ Samples of kernels
o cubic kernel,
e triangular kernel,
o normal kernel,
e exponential kernel,
o ...
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KNN models

Knn models are widely used
@ Main idea: fit the domain size according to the neighbourhood of xq

@ A fix number t, must belongs to the domain (it ensures that we cannot have
0 samples into the domain resulting to non-zeros value for p,(xo) )

@ Given D,(xo) a unit-volume and xq centered domain:
V[D,(xo)] =1

o Given D(xg, ) the homothetic domain of D,(xg) centered on xq with the
ratio c.
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KNN models

@ Then :
V[D(xo, )] = a

@ The KNN model consists of increasing « until D(xg, ) includes t, samples.

@ The probability density function estimator is computed by the following

function:
th

b\n(x()) = V[D(Zo,a)]
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KNN models

@ This estimator converges toward the true value of p,(xo) if:
t, = to x\/nou t, =ty * logn

@ with ty : a parameter (to adjust)
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KNN models for posterior estimation

@ In non-parametric models used for classification into a Bayesian framework,
the goal is to estimate the posterior distribution p(x|w;) from the samples.
@ Samples encodes:
e Prior probabilities P(w),
o likelihoods.

o Demonstration:
@ Given n samples drawing from the classes. K; samples are drawn from the

class w;. So:
c
n= E K,'
i=1
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Posterior distribution estimation

@ Given V, a volume around x, and k samples which belong to this volume
with k; samples associated to the class w;. We can write:

K;

P(wi) = —

() ="

ki

VoK

p(xler) = %

So:
ki
i .P i) = L
p(xlr).P(wr) = 2
T. Chateau (IP)
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Estimation of posterior distribution

@ Let apply the Bayes rule:
ki
p(xle).P(wi) v
.

plwilx) = < x|w;) P(w;
21:1 p(x|w;) P(w;) Zj:1 2

o Finally, the posterior probability is estimated by the ratio between the number
of samples associated to the class w; by the number of samples into the

volume.
plaib) ~
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Classification rule based on samples

@ Bayesian models assume the estimation of the likelihood p(x|w;) follow by
the Bayes rule.
@ Using KNN, it is possible to define decision rules from the samples:

o Decision rule of the nearest neighbour,
e Decision rule of the k nearest neighbours.
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Decision rule of the nearest neighbour

@ This method assumes that a distance measure between the features is
possible and can be defined.

@ The unknown feature is then classified with the same class than the nearest
feature.
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Decision rule of the k nearest neighbours

@ Just an extension of the the nearest neighbour decision rule,
@ Given an unknown feature x:

@ Given a distance measure between x and all the samples of a supervised
dataset,

@ We sort feature according to their distances to x and keep only the g samples
associated to the g smallest distances.

@ X is associated to the majority class inside the subset build by the g selected
samples
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Conclusion

o KDE is a very useful way to estimate probability density functions.
@ KNN is very popular for simple classification problems.

@ Both models are O(N?) and complexity must be handle for huge datasets
(eg: kdtrees of fast sort methods)
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