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Introduction

Bayes is an optimal classifier (if several assumptions are true) which provides
analytical solutions if P(ωi ) and p(x|ωi ) can be formalized.

In this framework, learn P(ωi ) and p(x|ωi ) is a essential operation.

We suppose that an annotated dataset is available (feature vector and
associated class)

The aim of the learning step is to estimate both the prior P(ωi ) and the
likelihood p(x|ωi ) from a training dataset.

Several methods exist to do that.
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Introduction

Parametric methods:

p(x|ωi ) is modelled by a parametric function fi (x;θi ) if a parameter vector θi ).
(example: Gaussian function)
Learning consists of estimating the parameter vector θi ) from a training
dataset.

Non parametric methods:

In this case, the pdf. is modelled directly from the training step:

p(x|ωi ) = f (x, samples)
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Parametric models

We assume that the parametric model (not parameters) of pdf p(x|ωi ) known
:

normal law,
Gamma law,
...

Several solutions exist to estimate the unknowns parameter vector θi :

Maximum likelihood,
Bayesien estimation,
...
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Parametric models

Rq : Here, only the maximum likelihood method is presented ( and for
supervised learning).
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Maximum likelihood

Given E∞, E∈, Ec, c sets of samples that represents the c classes. We assume
that

the samples are independent
sets are representative from p(x|ωi )

Hypothesis: The paramtric shape of p(x|ωi ) is known, and determined by a
parameter vectot θi.

Example: p(x|ωi ) can be approximated by a normal distribution N(µi , Σi ). In
this case: θi = {µi , Σi}.
If x ∈ IRd :

θi = {µ1, µ2, ..µd , σ22, σ23, .., σ2d , σ33, σ34, .., σ3d , ..., σdd}
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Maximum likelihood

Notation: p(x|ωi ;θi) stands for p(x|ωi ) depends on θi

Goal: Estimating the parameter vector θi

since the classes are independent, it is possible de have a separate study for
each class:

E = {X1,X2,X3, ..,Xn}
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Maximum likelihood

The probability to draw E , given a class follows a random law defined by the
parameter vector θ):

p(E ,θ) =
n∏

k=1

p(Xk |θ)

We find the an estimation of θ, defined θ̂, which maximizes p(E ,θ)
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Maximum likelihood

si θ = {θ1, θ2, .., θp} :

∇θ =


∂
∂θ1
∂
∂θ2
.
∂
∂θp


We define the expression l(θ) = log[p(E|θ)] :

l(θ) =
n∑

k=1

log[p(Xk |θ)]
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Maximum likelihood

Then,

∇θ l = ∇θ

n∑
k=1

log[P(Xk |θ)]

p(E|θ) will be maximum if:
∇θ l = 0
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Non parametric models

Parametric model → we need to fix the analytic model p(x|ωi ) :

Most of models are unimodal (exept.: mixture of Gaussian)
Strong assumption (if not verified, some results can be wrong)

Parametric models deal directly with samples and their spatial repartition.
Les méthodes non paramétriques prennent en compte les échantillons et leur
répartition spatiale dans l’espace des paramétres.

la conséquence et une estimation de p(x|ωi ) plus proche de la réalité
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Non parametric models

The global framework

Estimation of p(x|ωi ) or p(ωi |x)

Given D a domain of the features space (D ⊂ IRd) which can be considered
as a neighbourhood of the feature vector x for which we want to estimate
p(x|ωi ).

Hypothesis: p(x|ωi ) ≈ const. on D
then:

p(x ∈ D) =

∫
D
p(x′|ωi )dx

′ ≈ p(x|ωi )

∫
D
dx′
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Non Parametric Models

If V (D) is the hyper-volume of D :

p(x ∈ D) ≈ p(x|ωi )V (D)

then:

∀x ∈ Dp(x|ωi ) ≈
p(x ∈ D)

V (D)

If t samples, on n total ones belong in the domain D, then:

p(x ∈ D) ≈
t

n
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Non Parametric Models

and: p(x|ωi ) ≈
t
n

V (D)

Given x0 a feature and D(x0) a domain around the deature x0; we want to
build an estimator P̂(x0|ω). So,

P̂(x0|ω) ≈
t
n

V (D(x0))
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Non Parametric Models

Good estimator → converging estimator:

lim
n→∞

P̂(x0|ω) = P(x0|ω)

lim
n→∞

t
n

V (D(x0))
= P(x0|ω)

The estimator smooths the probability on the neighbourhood of x0

The lower D(x0) is, the better the estimator is (closer to the true value)
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Non Parametric Models

If D(x0) is too small, many domains won’t have any sample, resulting to
p(x|ωi ) = 0.

It is necessary to link the number of samples to the size of the domain. (n
and D(x0), will follow the notation Dn(x0)) :

P̂(x0|ω) =
tn
n

Vn(D(x0))
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Non Parametric Models

There are 3 necessary conditions for a converging estimator:

p̂n(x0|ω)→ p(x0|ω) si :

1 limn→∞ V (Dn(x0)) = 0

2 limn→∞ tn = +∞

3 limn→∞
tn

n
= 0
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Non Parametric Models

There are two main categories of non parametric models:

1 link V (Dn(x0)) to n : this is kernel based models (Kernel Density Estimation
also called Parzen windows)

2 link tn according to n adjusting the domain V (Dn(x0)) until k samples
belong to it: this is the k nearest neighbours models
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KDE models

also called Parzen Windows

Main idea: working with the domain function Dn(x0)

example with a hypercube of side hn :

V (Dn(x0)) = (hn)d

the features dimension is IRd

We define a function ϕ(u), egal to 1 inside the unit and centered on the
origin hypercube:
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KDE models

{
ϕ(u) = 1 si |uj | ≤ 0.5 j = 1, .., d
ϕ(u) = 0 sinon

If Dn(x0) is a hypercube of side hn, then:

x ∈ Dn(x0)⇔ ϕ

(
x0 − x

hn

)
= 1
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KDE models

The number of samples tn that belongs to the domain Dn(x0) is computed by the
following equation:

tn =
n∑

i=1

ϕ

(
x0 − xi
hn

)
where xi is the sample i .

P̂n(x0|ω) =
1

n

n∑
i=1

1

V (Dn(x0))
ϕ

(
x0 − xi
hn

)

The function ϕ is called kernel of the estimator
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Kernels

The kernel must be normalized:{
ϕ(x) ≥ 0 ∀x ∈ IRd∫
IRd ϕ(x)dx = 1

Samples of kernels

cubic kernel,
triangular kernel,
normal kernel,
exponential kernel,
...
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KNN models

Knn models are widely used

Main idea: fit the domain size according to the neighbourhood of x0

A fix number tn must belongs to the domain (it ensures that we cannot have
0 samples into the domain resulting to non-zeros value for p̂n(x0) )

Given Dr (x0) a unit-volume and x0 centered domain:

V [Dr (x0)] = 1

Given D(x0, α) the homothetic domain of Dr (x0) centered on x0 with the
ratio α.
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KNN models

Then :
V [D(x0, α)] = αd

The KNN model consists of increasing α until D(x0, α) includes tn samples.

The probability density function estimator is computed by the following
function:

p̂n(x0) =

tn

n
V [D(x0, α)]
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KNN models

This estimator converges toward the true value of pn(x0) if:

tn = t0 ∗
√
n ou tn = t0 ∗ logn

with t0 : a parameter (to adjust)
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KNN models for posterior estimation

In non-parametric models used for classification into a Bayesian framework,
the goal is to estimate the posterior distribution p(x|ωi ) from the samples.

Samples encodes:

Prior probabilities P(ωi ),
likelihoods.

Demonstration:

Given n samples drawing from the classes. Ki samples are drawn from the
class ωi . So:

n =
c∑

i=1

Ki
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Posterior distribution estimation

Given V , a volume around x, and k samples which belong to this volume
with ki samples associated to the class ωi . We can write:

P(ωi ) =
Ki

n

p(x|ωi ) =
ki
Ki

V

So:

p(x|ωi ).P(ωi ) =
ki
n

V
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Estimation of posterior distribution

Let apply the Bayes rule:

p(ωi |x) =
p(x|ωi ).P(ωi )∑c
j=1 p(x|ωj)P(ωj)

≈

ki
n

V∑c
j=1

ki
n

V

Finally, the posterior probability is estimated by the ratio between the number
of samples associated to the class ωi by the number of samples into the
volume.

p(ωi |x) ≈
ki

k
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Classification rule based on samples

Bayesian models assume the estimation of the likelihood p(x|ωi ) follow by
the Bayes rule.

Using KNN, it is possible to define decision rules from the samples:

Decision rule of the nearest neighbour,
Decision rule of the k nearest neighbours.
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Decision rule of the nearest neighbour

This method assumes that a distance measure between the features is
possible and can be defined.

The unknown feature is then classified with the same class than the nearest
feature.
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Decision rule of the k nearest neighbours

Just an extension of the the nearest neighbour decision rule,

Given an unknown feature x:

Given a distance measure between x and all the samples of a supervised
dataset,

We sort feature according to their distances to x and keep only the q samples
associated to the q smallest distances.

x is associated to the majority class inside the subset build by the q selected
samples
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Conclusion

KDE is a very useful way to estimate probability density functions.

KNN is very popular for simple classification problems.

Both models are O(N2) and complexity must be handle for huge datasets
(eg: kdtrees of fast sort methods)
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