
Clermont Auvergne University Machine Learning: Practical 3

pdf. estimation (non parametric models)

1 Introduction

The objective of this session is to practice with probability density function estimation
and classification using non parametric models, following the Machine Learning course.
You can get more information about lectures and associated practical sessions on my
website: http://chateaut.fr. Essential needed knowledges include a beginning level of
computer science (Linux, Python programming with Sklearn, Numpy, Matplotlib, Opencv
and Pytorch (for sessions on Deep Learning)) and applied mathematics. this practical uses
the same datasets (flowers) than practical one.

Given x0 a feature and D(x0) a domain around the feature x0; we want to build an
estimator P̂ (x0|ω). So,

P̂ (x0|ω) ≈
t
n

V (D(x0))

t is the number of samples which belongs to the domain D and n is the total number of
samples. There are two main categories of non parametric models:

1. link V (Dn(x0)) to n : this is kernel based models (Kernel Density Estimation also
called Parzen windows)

2. link tn according to n adjusting the domain V (Dn(x0)) until k samples belong to it:
this is the k nearest neighbours models (KNN)

2 Kernel Density Estimation Model

2.1 Estimating likelihood with KDE

The script ML_p21.py should be used for this section.
Here, we want to estimate the probability density function associated to the two classes

of flowers using a kernel density estimation model. The kernel density estimator is defined
by:

P̂n(x0|ω) =
1

n

n∑
i=1

1

V (Dn(x0))
ϕ

(
x0 − xi

hn

)
The function ϕ is called kernel of the estimator.

The KDE model is defined on sklearn python library by the function:
sklearn.neighbors.KernelDensity

1. complete the python script ML_p21.py that loads datasets, computes features, esti-
mates KDE and displays it. The options kernel=’gaussian’ and bandwidth=0.5
will be used.

T. Chateau 1 page 1/4

Clermont Auvergne University Machine Learning: Practical 3

2. The option kernel defines the kernel to use. Valid kernels are [’gaussian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’]
Default is ’gaussian’. Select at least three kernels, give their expression, and compare
it.

3. The option bandwidth selects the bandwidth of the kernel. Try several values from
0.01 to 5 and conclude on the influence of this parameter.

2.2 Bayesian Classification using KDE

Since KDE model can estimate likelihood function, it can be used into a Bayes rule to
estimate posterior distribution for a classification problem.

1. run the script ML_p21C.py and analyse the KDE decision function figure for banwidth =
0.25.

2. change the bandwidth of the estimator to 0.1, 0.5 and 1 and compare the resulting
decision function.

3 KNN Model

3.1 Estimating likelihood with KNN

The probability density function estimator for KNN is computed by the following function:

p̂n(x0) =

tn

n
V [D(x0, α)]

with tn : number of samples into the domain D, n total number of samples and α a scale
factor. The main idea of KNN model is to adjust α in order to include tn samples into the
domain D.

1. complete the python script ML_p22.py that loads datasets, computes features, esti-
mates KNN pdf and displays it. the option n_neighbors=x defines the number of
neighbours tn. Use tn = 1

2. Change tn to 2, 4 and 6 and compare the resulting pdf.

3.2 Classification with KNN

KNN is widely used for classification. The posterior distribution with the Bayes Rule can
be written using samples:

p(ωi|x) =
p(x|ωi).P (ωi)∑c
j=1 p(x|ωj)P (ωj)

≈

ki
n

V∑c
j=1

ki
n

V

and can be simplify by:

p(ωi|x) ≈
ki

k

T. Chateau 2 page 2/4

Clermont Auvergne University Machine Learning: Practical 3

1. run the python script ML_p22C.py that loads datasets, computes features, estimates
KNN pdf and displays the posterior for class1.

2. change the number of neighbour and compare the resulting posterior

4 Additional questions

1. Modify the script ML_p22C.py to compute the classification error on the test database.

Listing 1: Python script to display a 2d normal distribution in a 3D view
#!/ usr / b in /env python3
−∗− coding : u t f−8 −∗−
"""
Created on Tue Sep 11 07 :56 :48 2018
Pra c t i c a l 1 on Machine Learning Course , par t 1 :
python s c r i p t to d i s p l a y in a 3D view a 2−d normal law
@author : t h i e r r y cha t e au
"""

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . s t a t s import mult ivar iate_normal
from mpl_toolk i ts . mplot3d import Axes3D

p l o t a covar iance 2D law in 3D
def plotGaus (mu,C, min_x=−2, max_x=2, min_y=−2,max_y=2):

#Create g r i d and mu l t i v a r i a t e normal
x = np . l i n s p a c e (min_x ,max_x,200)
y = np . l i n s p a c e (min_y ,max_y,200)
X, Y = np . meshgrid (x , y)
pos = np . empty (X. shape + (2 ,))
pos [: , : , 0] = X; pos [: , : , 1] = Y
rv = mult ivar iate_normal (mu, C)
#Make a 3D p l o t
f i g = p l t . f i g u r e ()
ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
ax . p lo t_sur face (X, Y, rv . pdf (pos) , cmap=’ v i r i d i s ’ , l i n ew id th=0)
ax . s e t_x labe l (’X␣ ax i s ’)
ax . s e t_y labe l (’Y␣ ax i s ’)
ax . s e t_z l abe l (’Z␣ ax i s ’)

def main () :
#Parameters to s e t
mu_x = 0
mu_y = 0

T. Chateau 3 page 3/4

Clermont Auvergne University Machine Learning: Practical 3

mu = np . array ([mu_x, mu_y])
C = np . array ([[1 , 1] , \

[1 , 2]])
print ("cov␣matrix ␣=␣" , C)
plotGaus (mu,C)
p l t . show ()

i f __name__ == "__main__" :
execu te on ly i f run as a s c r i p t
main ()

T. Chateau 4 page 4/4

